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The asymptotic behaviour of the time constants in Fourier's series is given as z, ~ const/n 2. Its 
utilization attempts to circumvent the transcendent eigenvalue equation for ~,. This 
approximation tan be substantially improved by means of Rayleigh's variational principle. A 
practical example demonstrates the usefulness of this approach, making practical calculations 
distinctly more effective. 

Let us consider a linear transient Fourierean heat conduction problem in a stack 
of N homogeneous 

~(r, t) = I_ V[2V~(r, t)]+ Q(r, t) (I) 
D 

separately for each layer ( ( ' ) =  9()lOt) and then matches these single-layer 
solutions according to the continuity of temperature, 9, and heat flux density, 
- 2 ~'~, across the interfaces (say, in the x-direction; 2 and p are the heat conductivity 
and capacity, respectively, which are assumed to be constant within each layer). The 
compatibility requirement of these inner boundary conditions (BC) with the outer 
ones yields the eigenvalue equation, and thus the decay constants, z., in Fourier's 
series 

9(t) = ~ G,e -'1" ( 2 )  
n 

for the temperature history at some given point. 
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1302 E N D E R S :  T R A N S I E N T  H E A T  C O N D U C T I O N  

Obviously, the bottleneck of this method is the solution of the transcendental 
eigenvalue equation, the number of trigonometric summands of which grows 
roughly as 2 u. 

In [3, 4] we have shown that this problem can be greatly simplified by utilizing the 
asymptotic behaviour 

z. ~(r//nrc) 2 as n --* ~ (3) 

where N N 

,7 = Z ,7, = ~ 4 / ~ ,  '/~- (4) 
i=1  i=1  

• = 2/p (temperature conductivity or diffusivity), and d~ is the thickness of the i-th 

layer. 
Here, we improve this asymptotics by means of Raleigh's variational principle 

[5] and extend the situation to multi-dimensional cases (heat spreading). After 
deriving this in section 2, in section 3 we consider a practical example and discuss 
the numerical results. Section 4 gives some conclusions. Finally, in the Appendix, 
we discuss the concept of apparent effusivity [7] for step excitation. 

Variational principle 

Within Fourier's method of separation of  variables, one makes the ansatz 

~(r,  t) = T ( t ) X ( x )  Y ( y ) Z ( z )  

and gets 

T ( t )  = T(O)e  -~/~ 

_ _ 1  [ ; 4 x ) X ' ( x ) ] ' +  . ( x ) ~ , X ( x )  = 1 X ( x )  
p ( x )  

(X '  = d X / d x ,  etc.), where O9k21 = #2 + V 2 ' and 

r " ( v )  = - ~,~ r ( y ) ,  

For adiabatic BC at the side walls: 

. k  = 2k~/dy ,  

(5) 

(6) 

(7) 

z " ( z )  = - v~, Z(z) (8) 

v, = 21=/d= (9) 

where dyt~) is the extension of the stack in the y(z)-direction. 
It should be noted that (7) is not a Sturm-Liouville eigenvalue problem [6], since 

the coefficients jump at the interfaces. Nevertheless, one can perform a "partial" 
Sturm-Liouville transformation, which makes the coefficient of the second- 
derivation term constant. This leads to the asymptotics [3, 4]. 
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ENDERS: TRANSIENT HEAT CONDUCTION 1303 

Actually, the true z,-values oscillate around their asymptotic ones [3, 4] so we 
seek for an improvement of  the latter. 

If  both sides of (7) are multiplied by p ( x ) ,  the differential operator on the 1.h.s, 
becomes Herrnitean [6], and we get 

(2X')' + ( p -  2Ogkzl) X =  0 (10) 

The Gerjouy, Rau and Spruch [5] method of  constructing variational principles 
(VP) then leads to the variational esimation [3]: 

= -IIX, I1-2 f x,(,~x',)' d x +  ('c~ 1 > (11) 

with 

~ ; ~ =  u(x)o~,,  I/x, II ~ = <1>, 
(12) 

dx 

( f ( x ) >  = I P ( x ) X 2 ( x ) f ( x )  d x / ( 1  > 
0 

This means that the deviation of  (z-1)v from its true value is of  the order e z 
whenever the error in the trial function X t with respect to the exact solution of  (10) is 
of  the order e [5]. 

It is well known that the quality of  a variational solution depends crucially on the 
proper choice of  the trial function(s). 

As in [3], we chose the asymptotic eigenfunctions corresponding to (3). The four 
combinations of  outer BC of  1st and 2nd kind are listed in Table 1. For  case 2 

' (2)  X t = X m ( x  ) : c o s :  Fliq- - -  , O < ~ x < ~ d  i (13) x/r. 
i - I  

f/i = ~ r/i, F/I=O , r72=rh, ( I N = q - - q N .  (14) 
j = l  

Table 1 Asymptotic eigenvalues and eigenfunctions for the four harmonic BC; ~ is the argument in 
Eq, (13) 

Case ~l/n x / ~ ,  ~ X~ ~ BC 

1 n sin ~/x/~. X.(0) = X.(dx) = 0 
2 n-  1/2 cos ~ / ~  ~r.(o) = x.(ax) = 0 
3 n -  1/2 sin ~/,/r~ X.(0) = X'.(d~) = 0 
4 n cos ~ / , ~ .  X'.(O) = X'(d~) = 0 
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1304 ENDERS: TRANSIENT HEAT CONDUCTION 

We then obtain 

( x )  = (~  ~=t2 ,d~+S,+l / ( l )  
(15) 

and 

where 

dx _ 1 p id i -  S f  ! (2X'.t) 'Xnt d x  = - r;.t x 2 i (17) 

b/ 
S~  = 1 z~/2 E (2,_ x L  1/2 - 2,• ~/2) sin (26,/z.~/2) (18) 

4 i=2 1 

Obviously, the sine factor in S~ should produce oscillations of z ;  1. For instance, 
in the case of  a quas i - lD  two-layer stack, the first-order correction to (3) is [3] 

1 _ e 2 - e l  sin 2nnql . 
~ n  q l e l  +/ ' /2e2 q I "ql- ?'/2 ' 

ei = (~,~i) 1/2 
(19) 

Hence, up to the order •2, "iSn-1/2 oscillates as function of  n with n-independent 
amplitude and frequency. 

It now turns out that (3) is not an appropriate choice for z.t for multi-dimensional 
problems, since Xnz then contains no information about  the lateral diffusion (heat 
spreading in the y- and/or z-direction) [3]. A better choice is 

z,-t I = (n*n/rl)2+ (X)oO~21, n* =n or n -  1/2 (20) 

(cf. Table 1) (this influence of  the outer BC on n* was not considered in [4, 6]), for 
calculating S~ ,  where (x )0  can be calculated from (15) and (16) with the first term 
on the r.h.s, alone, i.e. 

(X)o  = 21di pidi (21) 
i=1 i 

z.t and X., can be further improved by successive repetition of  this cycle (super-VP, 
cf. [51). 
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Numerical results and discussion 

Let us consider an 8-layer stack (stripe-laser chip), the parameters of  which are 
listed in Table 2 [3]. We assume that layer 8 is mounted onto an ideal heat sink and 
that there is no heat loss on the side walls and on the upper surface. The power 
supply is provided by a current flow over the pn junction, assumed to be ideally thin 
and to lie at Xto 3) = 0.1 lam in the middle of  layer 3. The electric current is confined to 
a lateral width of  Wy = 6 ~tm (but uniform in the z-direction), while the stack 
thickness is dy = 400 Ima. Since wy,~ dy, considerable heat spreading (excitation of  
many diffusion modes in the y-direction) is to be expected. 

Table 2 Material constants of the 8-layer stack [3] 

dl, x~, ~ ,  
i 10 -6 m 10 -~ 11"12 S -1 Wm -x K -~ 

I 90 23.7 41.5 

2 2 7.06 12 

3 0.2 11.6 20 

4 1.3 7.06 12 

5 0.8 23.7 41.5 

6 0.2 5.0 10 

7 0.7 33.3 100 

8 11 15 26 

Thus, when the excitation is step-like, we have [3] 

Q(r, t) = a'sop316(Xto3)) W (y)O(t) (22) 

W (y) = O(y + w,/2) - O ( y -  w,/2) (23) 

where 0(y) denotes Heaviside's step function and Q'so is the injected power per area. 
The raising of  the temperature at thepn junction, averaged over the lateral source 

width, wy, is then described by 

~p,(t) = ~ Gk.,Z..k(l --exp (-- t/z,.~)) (24) 
k , n  

The calculation of the prefactors is simple; one obtains [3] 

Gt,n , 2 (;3) - 2 = Q~oX,,~(Xo )llX,,~ll 
(25) 

2 dy 1 ( w y )  
x 1 + 6,~ W-~ ke-nz sin' kn ~-y 

Here, X,. k are the solutions of  (7) with I= 0. 

J. Thermal Anal. 34, 1988 



1306 E N D E R S :  T R A N S I E N T  H E A T  C O N D U C T I O N  
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Fig. 1 Asymptot ic  behaviour  of  eigenvalues, #,  -1/2. , = = r .  , u ,  p,~/n;a) k = O , b ) k = l , c ) k = 5  
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Gk.n~ Fig. 2 Relative error of 1he approximative prefactors, vP with respect to the numerically calculated 
values, G[",', for different k-values (k = 0, 1, 5) 

Figure 1 displays the absolute error of the normalized eigenvalues (see Table 1, 
case 2). Clearly, a substantial improvement over (3) is gained by the simple VP 
approach outlined above. Naturally, the deviations grow with increasing k, since 
the trial values and functions are not very good for larger k. 

Figure 2 shows the corresponding relative errors of  the prefactor. The overall 
agreement is satisfactory; large errors are connected with very small values of one 
of the parameters. Within the total sum (24), however, they play a minor role. 

The latter is demonstrated in Fig. 3, where ~gp.(t) and e(t), the corresponding 
apparent effusivity (see Appendix), are drawn. At large times, t > z ~,0, the accuracy 
of 0(t) depends mainly on that ofz~, 0 ; for this, the largest differences in Fig. 3 occur 
at the end of the time scale. (The infinite series (24) was approximated by ~ 400 
terms, 16 x- and 25 y-modes, including all time constants up to 0.2 ~ts. This 
approximation gives only 0.0580 K for the stationary value, 0p.(~), while the exact 
one is 0.1296 K at Q',o = 106 Wm-2  [3]). 
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Fig. 3 Temperature and effusivity history at thepnjunction calculated with the numerical (straight line) 
and with the asymptotic decay constants (broken line) 

Conclusions 

The calculation of the coefficients of Fourier's series (2) without solving the 
transcendent eigenvalue equation is a very appealing task, since it saves a large 
amount of computer time (see also [3, 8]). On the other hand, a priori, a knowledge 
of the asymptotic behaviour of the eigenvalues (time constants) helps effectively in 

searching for their exact values, since it yields their density. More precisely, r//ltx//%~ 
has as function ofn the mean density unit (cf. (3)), i.e. there is, on average, just one 
value between two adjacent integers (cf. Fig. 1). 

The application of Rayleigh's VP (11) results in a significant improvement in the 
description of the asymptotic behaviour of the decay constants relative to (20) (see 
Fig. 1). Further improvement is possible with the super-VP [5], but the expense 
increases rapidly. As Fig. 3 shows, even the first correction can give quite 
satisfactory results. 

To summarize, this approach may make practical calculations distinctly more 
effective. 

Appendix. Apparent effusivity for step-like excitation 

In the method of pulsed photothermal modelling of materials [7, 9], one defines 
an apparent effusivity 

e~(t) = Q~o/O~(t) x/-~tt (A.1) 
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where 9~(t) is the front surface temperature after Dirac-pulse excitation. The 
effusivity as material parameter is defined as e = (2,o) 1/2 ; it is also called the heat 
penetration number ([2], p. 69). When t h e  sample is thermally isolated after 
excitation, ea(t) evolved from er(0)= el, the effusivity of  the excited layer, to 
ea(m) = 0 (cf. [71). 

The advantage of  plotting e(t) is that it displays a much more pronounced 
structure than O(t) [3, 7]. This structure corresponds to the penetration of  heat 
through the layers, but not in one-to-one manner: the plateau of  e(t) near t = 0  
reaches up to about 2 qmi,, independently of  the position of the layer to which r/mi, 
belongs [4, 3]. 

In contrast, this behaviour near t = 0 is completely changed, when the excitation 
is step-like (cf. (24)). Our aim is to modify (A. 1) so as to obtain an eo(t ) with similar 
behaviour as ea(t) obeys, especially near t = 0 (plateau). 

Due to the relation between the excitation shapes, we have 
Oa(t) = const'dOo(t)/dt. Furthermore, the plateau of  e~(t) near t = 0 is connected 
with the asymptotic behaviour 

~ ( t ) ~ Q ~ o / e l ~ t  as t ~ 0  (A.2) 

(cf. (A.1)). From this it follows that 

t 8o(t) 2Q~ov/ t /e lx /~  as t ~ 0  (A.3) 

Therefore, it seems reasonable to define 

eo(t) = 2Q'~o v/t/Oo(t) x /~  (A.4) 

When the sample does not lose heat, Oo(t) will increase nearly linearly with x/~, 
so that eo(t) evolves like e~(t), as invoked. In contrast, when there is a heat sink, 
a stationary temperature distribution develops, and eo(t) diverges as t 1/2 for t ~  ~ .  
However, in this case, e~(t) diverges too, because O~(t) will fall exponentially (z o 1/2 
is no longer an eigenvalue; cf. [3]). 

Figure 3 gives an example for the latter case. 

References 

1 H. S. Carslaw and J. C. Jaeger, Conduction of 
Heat in Solids, 2nd ed., Oxford U.P., London 
1959. 

2 H. Tautz, W/irmeleitung und Temperaturaus- 
gleich, Akademie-Verlag, Berlin 1971. 

3 J. Galley and P. Enders, Heat Transfer in 

Multilayer Systems. Limits of "Classical" 
Diffusion Theory, ZOS-Prepring 87-7, Berlin 
1987. 

4 P. Enders, J. Thermal Anal., 34 (1988) 319. 
5 E. Gerjuoy, A. R. P. Spruch and L. Spruch, 

Rev. Mod. Phys., 55 (1983) 725. 

J. Thermal Anal. 34, 1988 



1310 ENDERS: TRANSIENT HEAT CONDUCTION 

6 H. J. Dirschmidt, W. Kummer and M. 
Schweda, Einfiihrung in die mathematischen 
Methoden der Theoretischen Physik, Vieweg, 
Braunschweig 1976, Ch. 4. 

7 D. L. Balageas, J, C. Krapez and P. Cielo, J. 
Appl. Phys., 59 (1986) 348. 

8 P. Enders, J. Thermal Anal., 34 (1988) 871, 
9 P. Cielo, J. Appl. Phys., 56 (1984) 230. 

Zusammenfassung - -  Das asymptotische Verhalten der Zeitkonstanten in Fouriers Reihe ist 
r~t const/n 2. Sein Gebrauch zielt auf die Umgehung der transzendenten Eigenwertgleichung f~ir z,. 
L,lese Naherung kann mit Hilfe des Rayleighschen Variationsprinzips wesentlich verbessert werden. Ein 
praktisches Beispiel zeigt die Niitzlichkeit dieses Zuganges, der eine deutliche Effektivierung praktiseher 
Rechnungen liefert. 

Pe31oMe - -  A3rlMtlTOTItqeCl(Oe noae~enne BpeMeHHblX I1OCTOrIHHbI• B pa~ax qbypbepa eCTb TnCt const/n z. 

Ero ynoTpe6.aeHHe nanpaa:~eno Ha n36e~anne Tpanctten21eHTrioro ypaaneHna ~J~ %. ~TO npn6- 
.arl~eHHe MOXeT 6blTb cytt~ecTBeHao yJly~lllleHHblM IIocpe~lcTBOM BapHalIHOltHOFO HprlHIirina Penes. 
FIpaKTHqecKit~ npr~Mep noKa3blBaeT IIeHIfOCTb 3TOFO HOJ1XO~a, IlptlBO~SlUI~eFo K 3naqrlTe.abltOMy 
llOBblttleHHIO 3~eKTHBItOCTH HpaKTllqeClCI4X pacqeTOB. 
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